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                                                                 Abstract 

We report the demonstration of a reflection microscope that operates at 13.2-nm 

wavelength with a spatial resolution of 55±3 nm.   The microscope uses illumination from 

a table-top EUV laser to acquire aerial images of photolithography masks with a 20 second 

exposure time.  The modulation transfer function of the optical system was characterized.    
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Extreme Ultraviolet Lithography (EUVL) is the leading technology for integrated circuit 

fabrication at the 22 nm half-pitch node, and a contender technology for the 32 nm node [1].  The 

successful implementation of this approach relies on the availability of EUVL masks free of 

printable defects.  Therefore, there are pressing demands for the development of metrology tools 

capable of finding and characterizing printable amplitude and phase defects on the mask. The 

masks’ resonant-reflective multilayer coatings and wavelength-specific response dictate the 

necessity of EUV-wavelength inspection. 

Several techniques can be employed to detect and characterize mask defects.  Scanning 

methods, based on deep ultraviolet (DUV) light, are highly efficient for detecting defects in a 

relatively short time, but are incapable of assessing their EUV-wavelength-specific morphology  

[2-4].  Instead, for defect characterization, full-field microscopes that operate at wavelengths 

around 13.5 nm, within the bandwidth Mo/Si multilayer coatings, and that can render high-

resolution aerial images of the mask surface can be used.   These actinic inspection tools, when 

designed to mimic the imaging characteristics of production EUVL steppers, produce a 

magnified copy of the aerial image that allows the evaluation of pattern and defect printability, 

independent of the response of the photoresist.  Furthermore, these microscopes can be useful in 

defect repair evaluation for EUVL masks [3].  Demonstrations of actinic aerial microscopes have 

until now been conducted at synchrotron facilities where radiation from bending magnets 

provides the required illumination [5, 6].  Synchrotron-based actinic microscopes are capable of 

imaging amplitude and phase defects with a spatial resolution better than 100 nm [7]. 

Transitioning EUV inspection microscopes into compact devices that can be used to 

inspect EUVL masks on-site requires compact light sources that provide sufficient flux near 13.5 

nm wavelength to acquire aerial images with short exposure times.  Low resolution imaging 
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systems capable of locating defects but not resolve their morphology have been demonstrated 

using compact EUV incoherent sources [8, 9].  Due to their high brightness, table-top EUV 

lasers are attractive  illumination sources for compact high-resolution microscopy [10, 11].  A 

13.2-nm-wavelength table-top microscope capable of rendering images of transmissive samples 

with a spatial resolution better than 38 nm has been demonstrated [12].  However, the more 

challenging realization of a table-top reflection-mode microscope at this wavelength has not yet 

been realized.   In this letter we report what to our knowledge is the first demonstration of an 

actinic table-top EUV reflection microscope that captures images with a half-pitch spatial 

resolution of approximately 55 nm, comparable to that obtained with synchrotron sources.   

The microscope uses as its illumination source a table-top, plasma-based, collisional  

EUV laser that operates at a wavelength of 13.2 nm [13, 14].  This source is well suited for 

actinic mask inspection because Mo/Si multilayers have a reflectivity of about 55% at this 

wavelength. The laser beam is created by the amplification of spontaneous emission in a 

transient population inversion produced by electron impact excitation in a transition of nickel-

like Cd ions.  To generate the EUV laser pulses a plasma is created by heating a 4-mm-wide Cd 

slab target with a sequence of pulses from a chirped-pulse-amplification Ti:Sapphire laser 

system.  Pre-pulses are focused into a 30-µm-wide × 4-mm-long line, which creates a plasma 

that is allowed to expand to reduce electron density gradients [13, 14].  A transient population 

inversion is subsequently achieved by rapidly heating the plasma with an intense (~1×1014 W 

cm-2), 6.7-ps-duration pulse impinging at a grazing incidence angle of 23 degrees.  The laser is 

operated at 5 Hz repetition rate, producing a highly monochromatic (∆λ/λ < 1x10-4) beam with a 

moderate spatial coherence (1/20 of the beam diameter) and an average power of approximately 

1 µW [15]. 



 4 

The reflection microscope, housed in a 70×45×40 cm3 vacuum chamber, is illustrated 

schematically in Fig. 1.a.  The laser beam is directed by a 42°-incidence Mo/Si-coated flat mirror 

onto a condenser zone plate that focuses the light onto the sample.  The reflected light is 

projected by an off-axis zone plate objective, forming an image on an EUV-sensitive back-

illuminated CCD detector.  

The condenser and objective zone plates were fabricated by electron beam lithography on 

a 40-nm-thick Ni layer deposited onto 100-nm-thick Si3N4 membranes [16].  The 5-mm-diameter 

condenser zone plate has an outer zone width of 100 nm, and at 13.2-nm wavelength, it has a 38 

mm focal length, with a numerical aperture (NAc) of 0.066.   The condenser is slightly overfilled 

by the laser light and illuminates the EUV mask at a 6° angle of incidence from normal.  This 

geometry mimics the mask illumination conditions of a 4×-demagnification EUVL stepper with 

a numerical aperture of 0.25 [15].  

Figure 1.b shows a SEM micrograph of the objective zone plate.  The objective zone 

plate is an off-axis sub-aperture of a full parent zone plate lens that would have a 330-µm 

diameter (dashed line in the figure), an outer zone width of 40 nm, and a focal length of 1 mm. 

The pupil diameter is 120 µm, defining a numerical aperture of 0.0625, and its center is 

displaced 100 µm from the axis of the parent zone plate, as shown.  An uncoated rectangular 

aperture next to the off-axis objective zone plate, transmits the incoming condensed laser beam 

illumination.  The beam passes through the 40-nm-thick Si3N4 support membrane twice, 

reducing the intensity by approximately 50%,  The off-axis zone plate design enables near-

normal incidence imaging of the mask surface, minimizes aberrations, and provides incoherent 

illumination conditions by matching the NA of the condenser  [17]. 
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  In these experiments, the imaged object was the surface of a Mo/Si multilayer mirror 

with a patterned Ni absorber layer consisting of grating structures, with half-pitch sizes ranging 

from 80 to 500 nm.  EUV images of four elbow patterns with 80, 100, 120 and 140 nm half-pitch 

are shown in Fig. 2, along with their respective intensity cross-sections (lineouts).  The images 

were obtained using a 20 second exposure time, with the laser operating at a repetition rate of 5 

Hz.  The images have a field of view of approximately 5×5 µm2.  They were taken with a 

magnification of 610× at which each pixel on the CCD corresponds to 22 nm in the sample 

plane.  As expected for a practically incoherent optical system, the images show no 

distinguishable coherence effects.  Intensity cross-sections for each image were obtained by 

averaging five rows of pixels (almost 100 nm on the mask) across the horizontal and vertical 

grating lines. 

The modulation transfer function (MTF) of the microscope was constructed using the 

intensity modulation data obtained from the images shown in Fig. 2.  The modulation ((M=Imax-

Imin)/Imax) starts to roll off for structures smaller than 120 nm half-pitch, in agreement with 

simulations for a 0.0625 NA objective under incoherent illumination.  At 80 nm half-pitch, the 

smallest grating pattern available on the sample, the measured intensity modulation is 

approximately 65%, a value significantly higher than the Rayleigh resolution value of 26.5%. 

This indicates that the spatial resolution of the microscope is below 80 nm.   

In the absence of gratings structures with smaller lines, the characterization of the 

instrument’s modulation transfer function was extended using a knife-edge test.  For  incoherent 

imaging conditions the 10% to 90% intensity transition across a sharp edge corresponds to twice 

the half-pitch grating resolution of the optical system [17].  Figure 4 shows the intensity cross-

sections obtained across the image shown in the insert.  The measurements yielded a 10% to 
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90% transition of 110±5 nm, corresponding to a half-pitch grating spatial resolution for the 

microscope of 55±3 nm. 

The spatial resolution of the microscope was independently confirmed by analyzing the 

EUV images of Fig. 2 with the full-image correlation method described by Wachulak, et al. [18].  

Using this correlation method, a half-pitch resolution of 53±10 nm was obtained.  This resolution 

meets the specifications set for the 22 nm technology half-pitch node.  

In summary, we have demonstrated an actinic table-top EUV reflection microscope with 

a partial coherence (σ) value of 1.0 and a spatial resolution of approximately 55 nm.  To 

demonstrate that this technique can be used in EUVL actinic photomask inspection, images of 

absorber patterns on a Mo/Si multilayer mirror were obtained with 20 second exposure times.   
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Engineering Research Centers Program of the National Science Foundation under NSF Award 

Number EEC-0310717.   
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Figure captions 

 

Fig. 1. a) Schematic illustration of the compact actinic reflection microscope (not to scale).  b) 

Top: SEM image of the off-axis objective zone plate and uncoated window region.  The dashed 

line indicates the extent of the ‘parent’ zone plate.  Bottom: 40 nm half-pitch outer zones of the 

objective zone plate. 

 

Fig. 2. Actinic images and intensity cross sections of elbow patterns with:  a) 80 nm, b) 100 nm, 

c) 120 nm, and d) 140 nm. The images were obtained with an exposure time of 20 seconds and a 

magnification of ~610×.  The lineouts show that all the periodic patterns are fully resolved. 

 

Fig. 3. Microscope’s modulation transfer function. The MTF was constructed using the line-outs 

from the images of Fig. 2 (open circles) and the knife-edge test (solid circle). The data points for 

the grating half-pitch are averages of intensity modulation values obtained for several cross-

sections taken from the vertical and horizontal gratings. 

 

Fig. 4. Knife-edge test for the EUV image shown in the insert.  The 10% to 90% transition is 

110±5 nm. 
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